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Abstract

This article deals with the analysis of solidification of a 2-D semitransparent absorbing, emitting and scattering medium. An enthalpy
based formulation was employed to simulate the phase-change process. Solidification was assumed to occur over a range of tempera-
tures, and accordingly distinct liquid-, mushy- and solid-zones were considered. The problem was solved using the lattice Boltzmann
method. The finite volume method was used to compute the radiative information required in the LBM formulation. Effects of various
parameters such as the extinction coefficient, the scattering albedo, the conduction–radiation parameter and the latent heat were studied
on temperature and liquid fraction distributions in the medium. These parameters were found to have significant effect on results.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerical modeling of the solidification and melting
phenomena is an important field of research because of
its relevance in various engineering applications such as
crystal growth, alloy processing, nuclear engineering and
laser material processing [1–18]. Due to the complex mech-
anism governing formation and movement of the phase-
change interface, the analytical solutions are limited to sim-
ple cases [1]. Numerical methods are more frequently used
to analyze the phase-change process [2–18].

Semitransparent materials such as oxides, fluorides and
silicon find extensive applications as single- and poly-crys-
tals, glasses, ceramics and composites [19–24]. Unlike
phase change of metals in which thermal radiation appears
only in the boundary conditions, in semitransparent mate-
rials, it penetrates inside the medium and thus its consider-
ation in the governing energy equation becomes essential
[2–18]. Further, response of these materials towards
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absorption, emission and scattering of thermal radiation
has considerable effect on the phase change process.

Different conventional CFD method such as the finite
difference method, the finite element method and the finite
volume method (FVM) have been used to analyze the
phase-change processes of semitransparent materials [2–
12]. In using these methods to solve the energy equation,
the radiative information was computed using the methods
like the P-1 approximation [5], the discrete ordinates
method (DOM) [9–11,18] and the discrete transfer method
(DTM) [17].

The lattice Boltzmann method [LBM] is relatively a new
CFD tool to analyze various types of problems in science
and engineering [14–18,25–33]. Because of its mesoscopic
origin, it has several advantages. Some of these include
simple calculation procedure, simple and efficient imple-
mentation for parallel computation, easy and robust han-
dling of complex geometries and high computational
performance with regard to stability and accuracy [25–27].

Recently the application of the LBM has been extended
to simulate the phase-change process. Jiaung et al. [13]
analyzed solidification of a planar layer using the LBM.
Chatterjee and Chakraborty [15] used the LBM to solve
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Nomenclature

A area (m2)
b number of directions in a lattice
cp specific heat (kJ/kg K)
C heat capacity (kJ/m3 K)
ei propagation speed in the direction i in the lat-

tice, j~eij (m/s)
~ei propagation velocity in the direction i in the lat-

tice (m/s)
fl volume phase fraction of the liquid phase
G incident radiation (W/m2)
H total enthalpy (kJ/kg)
I intensity (W/m2)
k thermal conductivity (W/mK)
L latent heat (kJ/kg)
M total number of rays/intensities
N conduction–radiation parameter = kb

4rT 3
S

ni particle distribution function in the i-direction
(K)

nð0Þi equilibrium particle distribution function in the
i-direction (K)

qR radiative heat flux (W/m2)
~r lattice node (m)
S radiative source term (W/m2)
St Stanton number = CsðT 0�T NÞ

L
T temperature (K)
t time (s)
V volume (m3)
wi weight factor corresponding to the direction i in

a lattice
X,Y x- and y-dimensions of the geometry (m)
x,y coordinate directions

Greek symbols

a thermal diffusivity (m2/s)
b extinction coefficient (m�1)
e emissivity
q density (kg/m3)
h polar angle
/ azimuthal angle
r Stefan–Boltzmann constant = 5.67 � 10�8 W/

m2 K4

s relaxation time (s)
DX elemental solid angle
x scattering albedo
U source term which affects the distribution func-

tion ni, Eq. (26).

Subscripts

b boundary
E, W, N, S east, west, north, south
i lattice direction index
0 initial temperature
l liquid phase
m melting
P cell center
s solid phase

Superscripts
K iteration level at a given time level
m direction index

4448 S.C. Mishra et al. / International Journal of Heat and Mass Transfer 51 (2008) 4447–4460
solidification of a 3-D cubical medium. Their analyses were
limited to solidification of metals which did not require
consideration of volumetric radiation.

Very recently, Raj et al. [17] and Parida et al. [18] solved
solidification of a 1-D planar semitransparent material
using the LBM. Raj et al. [17] computed the radiative infor-
mation using the DTM, while in [18], Parida et al. com-
puted the same using the DOM. In references [17,18], the
LBM in conjunction of the DTM or the DOM was found
to successfully analyze the solidification process in a 1-D
planar medium. Radiation was found to have significant
effect on liquid-fraction and temperature distributions.

The 2-D geometries bring additional complications as
unlike the 1-D planar medium, the mushy-zone spans over
the 2-D space and the effect of all the four boundaries need
to be taken into account. Further, radiation in this case is
no longer azimuthally symmetric and the LBM has to be
compatible with the method to calculate the radiative
transfer.

To extend the application of the LBM, in the present
work, we analyze solidification of a 2-D semitransparent
material. An enthalpy based formulation is used to simu-
late the phase-change process. Solidification is assumed
to occur over a range of temperatures, and accordingly dis-
tinct liquid-, mushy- and solid-zones are considered. Radi-
atively, the medium is considered absorbing, emitting and
scattering. The radiative information required in the solu-
tion is computed using the FVM [33,34]. The mushy-zone
interfaces are tracked and temperature profiles are com-
puted for different parameters such as the extinction coeffi-
cient, the scattering albedo, the conduction–radiation
parameter and the latent heat.

2. Formulation

Consider solidification of a 2-D rectangular semitrans-
parent material (Fig. 1). Initially the material is at temper-
ature T0 which is higher than its melting temperature Tm.
At time t > 0, its north boundary is maintained at temper-
ature TN which is below its melting temperature Tm. The
remaining three boundaries are kept at initial temperature
T0. For the material under consideration, solidification is



Fig. 1. (a) Arrangement of lattices and control volumes in a 2-D rectangular geometry with marching scheme in the FVM for four equally spaced sample
directions with one in every quadrant and (b) coordinate system for direction in the FVM.
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considered over a range of temperatures. With the passage
of time, solidification starts from the north boundary and a
mushy zone appears. Unlike the movement of a distinct
front, the mushy-zone starts moving and its thickness
changes with time. Further, since the material is a semi-
transparent one, radiation penetrates inside and its consid-
eration in the energy equation becomes paramount. For
the problem under consideration, the enthalpy-based
energy equation with volumetric radiation is

oðqHÞ
ot

¼ �r � ð�krT Þ � r �~qR ð1Þ

where H is the total enthalpy, q is the density, k is the ther-
mal conductivity and ~qR is the radiative heat flux. In Eq.
(1), for a 2-D rectangular medium (Fig. 1), r ¼ o

oxþ o
oy.

For a phase-change problem, the total enthalpy H is writ-
ten as [1]
H ¼ cP T þ flL ð2Þ

where L is the latent heat and fl is the liquid-fraction. In the
solid-zone fl = 0, while for the liquid-zone fl = 1. In the
mushy-zone, 0 < fl < 1. With H defined as above, Eq. (1)
can be written as

oðqcP T Þ
ot

¼ r � ðkrT Þ � L
oðqflÞ

ot
�r �~qR ð3Þ

If the thermophysical properties of the particular zone are
assumed constant and also independent of time, we can
write Eq. (3) for a specific (solid-, mushy- and liquid) zone
as

oT
ot
¼ ar2T � L

C
oðqflÞ

ot
� 1

C
r �~qR ð4Þ

where a = k/qcP is the thermal diffusivity and C = qcp is
the heat capacity. It is to be noted that a, C and q in differ-
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ent zones have different values. In the solid-, mushy- and
liquid-zones, the liquid-fraction fl and enthalpy are related
as [1]

fl ¼
0; H < H s

H�H s

H l�H s
; H s 6 H 6 H l

1; H > H l

8><
>: ð5Þ

In Eq. (5), subscripts s and l stand for solid- and liquid-
zones, respectively. For the problem under consideration,
the initial and the boundary conditions are the following:

Initial condition : T ðx; y; 0Þ ¼ T 0 > T m

Boundary conditions : T ðx; 0; tÞ ¼ T S ¼ T 0

T ð0; y; tÞ ¼ T W ¼ T 0

T ðX ; y; tÞ ¼ T E ¼ T 0

T ðx; Y ; tÞ ¼ T N < T m

ð6Þ

In the present work, the LBM was used to solve the prob-
lem. The radiative informationr �~qR required by the LBM
was computed using the FVM. In the following pages, first
we provide a brief formulation of the FVM to compute
r �~qR followed by the LBM formulation to simulate the
solidification process. The details of the FVM approach
adopted in this work can be found in Mishra and Roy [33].
Fig. 2. (a) D2Q9 lattice used in a 2-D geometry and (b) schematic of
particle distribution functions at the four corner points.
2.1. Finite volume method (FVM) formulation

The radiative transfer equation in any discrete direction
ŝm ¼ ðsin hm cos /mÞ̂iþ ðsin hm sin /mÞ̂jþ ðcos hmÞk̂ with
direction index m is given by

dIm

dsm
¼ �bIm þ Sm ð7Þ

where I is the intensity and b is the extinction coefficient.
The source term S for an absorbing, emitting and isotrop-
ically scattering medium is given by

S ¼ bð1� xÞ rT 4

p

� �
þ bx

4p
G ð8Þ

where x is the scattering albedo and G is the incident
radiation.

Resolving Eq. (7) along the x- and y-coordinate direc-
tions (Fig. 1b) and integrating it over the elemental solid-
angle DXm, we get

oIm

ox
Dm

x þ
oIm

oy
Dm

y ¼ �bImDXm þ SmDXm ð9Þ

If n̂ is the outward normal to a surface, then Dm is given by

Dm ¼
Z

DXm
ðn̂ � ŝmÞdX ð10Þ

When the outward normal n̂ is pointing towards one of the
positive coordinate directions, Dm

x and Dm
y are given by [33]
Dm
x ¼ cos /m sin

D/m

2

� �
½Dhm � cos 2hm sinðDhmÞ� ð11Þ

Dm
y ¼ sin /m sin

D/m

2

� �
½Dhm � cos 2hm sinðDhmÞ� ð12Þ

For n̂ pointing towards the negative coordinate directions,
signs of Dm

x and Dm
y are opposite to what are obtained from

Eqs. (11) and (12). In Eq. (9), DXm is given by [33]

DXm ¼ 2 sin hm sin
Dhm

2

� �
D/m ð13Þ

Integrating Eq. (9) over a 2-D control volume and using
the concept of the FVM for the CFD, we get

½Im
E � Im

W �AxDm
x þ ½Im

N � Im
S �AyDm

y ¼ ½�bVIm
P þ VSm

P �DXm ð14Þ

where Ax and Ay are the areas of the x- and y-faces of the 2-
D control volume, respectively. In Eq. (14), I with suffixes
E, W, N and S designate east, west, north and south con-
trol surface average intensities, respectively. On the right-
hand side of Eq. (14), V = dx � dy is the volume of the cell
and Im

P and Sm
P are the volume averaged intensity and source

term at the cell centreP, respectively (Fig. 1a).
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In any discrete direction having index m, the two cell-
surface intensities and the cell-centre intensity Im

P (Fig. 1a)
can be related as

Im
P ¼

Im
E þ Im

W

2
¼ Im

N þ Im
S

2
ð15Þ

while marching from the first quadrant of a 2-D enclosure
(Fig. 1a) for which Dm

x and Dm
y are both positive (Fig. 1b),

from Eqs. (14) and (15), Im
P in terms of known Im

W; I
m
S and Sm

P

is written as

Im
P ¼

2Dm
x AxIm

W þ 2Dm
y AyIm

S þ ðV DXmÞSm
P

2Dm
x Ax þ 2Dm

y Ay þ bV DXm ;

1st quadrant : Dm
x > 0; Dm

y > 0 ð16aÞ

while marching from other quadrants (Fig. 1a), either or
both of Dm

x and Dm
y are negative (Fig. 1b). In this case, Im

P

in terms of known cell-surface intensities and source term
is written as
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Fig. 3. Grid- and ray-independence tests: Effect of number of lattices/control v
for 4 � 8 rays. Effect of number of rays on centerline: (a) liquid-fraction and
Im
P ¼

2jDm
x jAxIm

E þ 2Dm
y AyIm

N þ ðV DXmÞSm
P

2jDm
x jAx þ 2Dm

y Ay þ bV DXm ;

2nd quadrant : Dm
x < 0; Dm

y > 0 ð16bÞ

Im
P ¼

2jDm
x jAxIm

E þ 2jDm
y jAyIm

N þ ðV DXmÞSm
P

2jDm
x jAx þ 2jDm

y jAy þ bV DXm ;

3rd quadrant : Dm
x < 0; Dm

y < 0 ð16cÞ

Im
P ¼

2Dm
x AxIm

W þ 2jDm
y jAyIm

N þ ðV DXmÞSm
P

2Dm
x Ax þ 2jDm

y jAy þ bV DXm ;

4 th quadrant : Dm
x > 0; Dm

y < 0 ð16dÞ

In Eq. (8), incident radiation G is numerically computed
from the following [33]

G �
XM/

k¼1

XMh

l¼1

Imðhm
l ;/

m
k Þ2 sin hm

l sin
Dhm

l

2

� �
D/m

k ð17Þ

where Mh and M/ are the number of discrete points consid-
ered over the complete span of the polar angle (0 6 h 6 p)
and azimuthal angle (0 6 / 6 2p), respectively. Therefore,
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Mh �M/ constitute the number of discrete directions in
which intensities are considered at any point.

While marching from any of the corners, evaluation of
Eq. (16) requires knowledge of the boundary intensity.
For a diffuse-gray boundary having temperature Tb and
emissivity eb, the boundary intensity Ib is computed from

Ib ¼
ebrT 4

b

p
þ 1� eb

p

� �XM/

k¼1

XMh=2

l¼1

Imðhm
l ;/

m
k Þ sin hm

l

� cos hm
l sin Dhm

l D/m
k ð18Þ

In Eq. (18), the first and the second terms represent the
emitted and the reflected components of the boundary
intensity, respectively.

Once the intensity distributions are known, radiative
informationr �~qR required for the energy equation is com-
puted from

r �~qR ¼ bð1� xÞ 4p
rT 4

p
� G

� �
ð19Þ
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results of the present 2-D
solidification code without phase change with that of [33]; Lines represent
results of present work.
2.2. Lattice Boltzmann method (LBM) formulation

The discrete Boltzmann equation with Bhatanagar–
Gross–Krook (BGK) approximation is given by [27]:

onið~r; tÞ
ot

þ~ei � rnið~r; tÞ ¼ �
1

s
½nið~r; tÞ � nð0Þi ð~r; tÞ�;

i ¼ 0; 1; 2; . . . ; b ð20Þ

where ni is the particle distribution function denoting the
number of particles at the lattice node~r and time t moving
in direction i with velocity~ei along the lattice link Dr = eiDt

connecting the neighbors, (b + 1) is the number of particle
distribution functions in a lattice (Fig. 2a) and b is the
number of directions through which the information prop-
agates. For the D2Q9 lattice (Fig. 2a), b = 8. In Eq. (20), s
is the relaxation time and nð0Þi is the equilibrium particle dis-
tribution function.

The relaxation time s for the D2Q9 lattice (Fig. 2a) is
computed from [27]

s ¼ 3a

j~eij2
þ Dt

2
ð21Þ

where a is the thermal diffusivity and Dt is the time-step.
The 9 velocities ~ei and their corresponding weights wi in
the D2Q9 lattice (Fig. 2a) are the following [27]:

e0 ¼ ð0; 0Þ; e1;3 ¼ ð�1; 0Þ � U ; e2;4 ¼ ð0;�1Þ � U ;
e5;6;7;8 ¼ ð�1;�1Þ � U ð22Þ

w0 ¼
4

9
; w1;2;3;4 ¼

1

9
; w5;6;7;8 ¼

1

36
ð23Þ

In Eq. (21), for a square lattice, U ¼ Dx
Dt ¼

Dy
Dt.

After discretization, Eq. (20) can be written as [27]

nið~r þ~eiDt; t þ DtÞ ¼ nið~r; tÞ �
Dt
s

nið~r; tÞ � nð0Þi ð~r; tÞ
h i

ð24Þ
This is the LB equation with BGK approximation that de-
scribes the evolution of the particle distribution function ni.
Eq. (24) represents the equivalent of Eq. (4) without liquid-
fraction (term 2) and the volumetric radiation (term 3) in
the right hand side of the energy equation (Eq. (4)).

To account for the liquid-fraction (term 2) and volumet-
ric radiation (term 3) in the right hand side of the energy
equation (Eq. (4)), in the LBM formulation, Eq. (24) gets
modified to [17,18,29–31,33]

nið~r þ~eiDt; t þ DtÞ ¼ nið~r; tÞ �
Dt
s
½nið~r; tÞ � nð0Þi ð~r; tÞ�

� DtwiUi �
Dtwi

C

� �
r �~qR ð25Þ

where

Ui ¼
Lq
C

flð~r; t þ DtÞ � flð~r; tÞ
Dt

� �
i

ð26Þ
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It is to be noted that the relaxation time s, the density q and
the heat capacity C are different for solid-, mushy- and li-
quid-zones.

Eq. (25) is the equivalent form of the energy equation
(Eq. (4)) in the LBM formulation. It describes solidification
of a semitransparent material taking place over a range of
temperatures. It is to be noted that using the Chapman–
Enskog multi-scale expansion, energy equation (Eq. (4))
can be deduced from Eq. (25). Further details on this for
the solidification problem without and with radiation can
be found in [13,16,17], respectively. For conduction–radia-
tion problems without phase-change, the same can be
found in [29–33].

For the problem under consideration, the temperature is
obtained after summing the particle distribution functions
ni over all directions [27], i.e.,

T ð~r; tÞ ¼
X8

i¼0

nið~r; tÞ ð27Þ

To process Eq. (25), the required equilibrium distribution
function nð0Þi is given by
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at time t =
nð0Þi ð~r; tÞ ¼ wiT ð~r; tÞ ð28Þ

For any lattice, the weights satisfy the relation
P8

i¼0wi ¼ 1.
Therefore, from Eqs. (27) and (28), we also have

X8

i¼0

nð0Þi ð~r; tÞ ¼
X8

i¼0

wiT ð~r; tÞ ¼ T ð~r; tÞ ¼
X8

i¼0

nið~r; tÞ ð29Þ
2.3. Boundary conditions in the LBM and the FVM

In application of the LBM to heat transfer problems,
temperature boundary condition can be applied using the
bounce-back concept in which energy is balanced at any
point on the boundary. Because of this balancing, in imple-
mentation of the LBM, as shown in Fig. 1a, the LBM lat-
tices along the boundaries always extend a distance equal
to half the control volume dimension in the respective
coordinate directions and the lattice centres of the bound-
ary lattices always lie along the boundaries. At each of the
four corners, two directions that do not contribute to infor-
mation propagation in the medium are not considered. For
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example, at the bottom-left and the top-right corners,
directions 6 and 8 (Fig. 2b) and at the top-left and bot-
tom-right corners directions 5 and 7 (Fig. 2b) have no influ-
ence and thus in the bounce-back scheme they are not
considered. Details on implementation of the boundary
conditions can be found in Mishra et al. [30].

In the solution of Eq. (25), radiative information r �~qR

are required at the lattice centres. However, in the FVM,
these are available only at the centres of the control sur-
faces and the control volumes (Fig. 1a). These values of
r �~qR are translated to the lattice centres through an aver-
aging procedure whose details can be found in Mishra and
Roy [33].

Radiative boundary condition is required in determina-
tion of r �~qR that is needed in the solution of the energy
equation (Eq. (25)). Eq. (18) is used in implementing the
radiative boundary condition for a diffuse-gray wall at a
prescribed wall temperature.
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3. Solution procedure in the LBM

The medium is divided into a finite number of lattices/
control volumes. The control volumes of the FVM for
computing the radiative information r �~qR and lattices in
the LBM are staggered as shown in Fig. 1a. Sizes of the lat-
tices and the control volumes are taken the same. In solving
Eq. (25), r �~qR information required at the lattice centres
(Fig. 1a) are computed using the procedure described in
Mishra et al. [33]. The algorithm for solving the solidifica-
tion problem using the LBM is as follows.

1. Calculate the equilibrium particle distribution function
nð0Þi ð~r; tÞ using Eq. (28) for the known temperature field.
For the first time level, the particle distribution func-
tion is assumed as nið~r; tÞ ¼ nð0Þi ð~r; tÞ.

2. Calculate the divergence of radiative heat flux r �~qR

using Eq. (19).
3. For the Kth iteration, at the new time level t + Dt,

a. Compute nK
i ð~r þ~eiDt; t þ DtÞ
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b. Compute temperature field T Kð~r; tÞ using Eq. (27).
c. Compute the total enthalpy H K ¼ CT K þ f K�1

l L.
d. Update the liquid-fraction f K

l using
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Fig. 6. Variation of centerline: (a) liquid-fraction fl and (b) temperature T/
TS at different instants t; x = 0.0, b = 1.0, N = 0.1, L = 1.0.
e. Check for convergence
min
f K

l � f K�1
l

f K�1
l

����
����; T K � T K�1

T K�1

����
����

� �
6 10�6

If converged, go to step 4. Else go to 3a.
4. At this time level t + Dt, propagate the particle distri-

bution function ni to the neighboring lattices and apply
the boundary conditions.

5. Compute the new temperature field T ð~r; t þ DtÞ using
Eq. (27).

6. Terminate the process when the desired time level or
the steady-state is reached. Else go to step 1. For the
steady-state the convergence criteria is:
T ð~r; t þ DtÞ � T ð~r; tÞ
T ð~r; tÞ

����
���� 6 10�6
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4. Results and discussion

First the grid-independence and ray-independence stud-
ies were carried out for the LBM-FVM formulation pre-
sented in Section 2. Next, the 2-D LBM-FVM code for
conduction–radiation without solidification was validated
against Mishra et al. [35]. After that, by stretching one of
the dimensions, the results from the present 2-D code for
solidification without considering the effect of radiation
were benchmarked against those available in the literature
[1] for a 1-D planar medium. Then for different parameters
such as the extinction coefficient b, the scattering albedo x,
the conduction–radiation parameter N and the latent heat
L, liquid-fraction and temperature distributions in the
medium were studied.
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Fig. 7. liquid-fraction fl contours at time (a) t = 0.1 s, (b) t = 1.0 s, (c) t = 2.0 s
0 < fl < 1.
For a square medium undergoing solidification, grid-
independence results are shown in Fig. 3a and b, and the
ray-independence results are shown in Fig. 3c and d. With
4 � 8 rays, Fig. 3a and b, respectively show centreline

x
X ¼ 0:5
� �

liquid-fraction fl and temperature T
T S

distributions
along y

Y for 21 � 21, 25 � 25, 31 � 31 and 35 � 35 lattices/
control volumes. It is seen that the temperature distribu-
tions are independent of the lattices/control volumes con-
sidered. However, the results of the liquid-fraction have a
slight variation in the mushy-zone. It is seen from Fig. 3a
that 31 � 31 lattices/control volumes are optimum as no
significant improvement beyond 31 � 31 lattices/control
volumes is found.

With 31 � 31 lattices/control volumes, effects of differ-
ent number of rays on centreline x

X ¼ 0:5
� �
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and (d) t = 5.0 s for x = 0.0, b = 1.0, N = 0.1, L = 1.0. In the mushy-zone
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fl and temperature T
T S

distributions along y
Y are shown in

Fig. 3c and d, respectively. No significant change is
observed beyond 4 � 8 rays. Thus in the following pages,
for a 2-D square medium, all results are presented for
31 � 31 lattices/control volumes and 4 � 8 rays.

Fig. 4a and b show validation of the present 2-D
LBM-FVM solidification code without considering the
effect of phase-change with that reported in [35]. For this
situation, the present problem reduces merely to an anal-
ysis of combined conduction and radiation heat transfer.
In Fig. 4a, the present LBM-FVM centreline temperature
T

T S
results are compared for two values of the conduction–

radiation parameter N = 0.01 and 1.0. With extinction
coefficient b = 1.0, these comparisons are shown for
absorbing-emitting case, x = 0.0. For N = 0.1, b = 0.1,
x = 0.0 and N ¼ 0:01; b ¼ 1:0;x ¼ 0:5; T

T S
results are com-

pared in Fig. 4b. It is seen from Fig. 4a and b that the
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Fig. 8. Temperature T/TS contours at time (a) t = 0.1 s, (b) t = 1.0 s, (
results of the present work are in good agreement with
those available in [34].

Fig. 5a–c show the validation of the present 2-D LBM-
FVM solidification code without considering the effect of
radiation. This validation is done with the analytic results
of Co and Sunderland [1] for a 1-D planar medium. For
this validation, the x-dimension of the 2-D medium in
the present LBM-FVM code was stretched 10 times X

Y ¼
�

10Þ and then the results along the centreline x
X ¼ 0:5
� �

were
compared with those of the 1-D case.

While validating the solidification results in Fig. 5a–c,
the following material properties were kept the same as
considered in [1]. kl/ks = 0.6, kmz/ks = 0.76, Cl/Cs = 1.2
and Cmz/Cs = 1.12. The numerical values of a for the three
regions were calculated from the knowledge of the above
ratios. The temperatures T

T S
at the solid-mushy and

mushy-liquid interfaces were set at 0.6 and 0.8, respec-
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tively. The initial temperature for this validation was taken
as T 0

T S
¼ 1:0 and the boundary conditions for t > 0, were

T W

T S
¼ T E

T S
¼ 1:0 and T N

T S
¼ 0:0.

In Fig. 5a and b, movements of the solid-mushy and
liquid-mushy fronts with time have been compared for
Stanton number St[ = Cs(T0 � TN)/L] = 1.0 and 0.1,
respectively. In Fig. 5c, temperature T

T S
distributions along

the centreline have been compared for St = 1.0 and 0.1.
It is seen from this figure that for X

Y ¼ 10:0, the LBM-
FVM 2-D results compare very well with 1-D analytic
results given in [1].

In the following pages, while presenting the solidifica-
tion results for a square medium X

Y ¼ 1:0
� �

with the effect
of thermal radiation, the parameters were kept the same
as considered in the validation of solidification results.
The value of the solid thermal diffusivity as was obtained
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Fig. 9. Variation of centerline: (a) liquid-fraction fl and (b) temperature T/
TS for different values of the extinction coefficient b at time t = 5.0 s;
x = 0.0, N = 0.1, L = 1.0.
from the chosen values of the conduction–radiation param-
eter N ¼ kb

4rT 3
S

	 

and the extinction coefficient b. The initial

condition was set to T 0

T S
¼ 1:0. Since the temperature of

0.0 K is impractical in the problems involving radiation,
for t > 0, the boundary conditions were kept as:
T W

T S
¼ T E

T S
¼ 1:0 and T N

T S
¼ 0:5. In calculation of the radiative

information r �~qR, all the four boundaries were assumed
black.

Fig. 6a and b show the centreline liquid-fraction fl and
temperature T

T S
distributions for an absorbing-emitting

medium (x = 0.0) with b = 1.0, N = 0.1 and L = 1.0 kJ/
kg over a period of 5 s. Fig. 7a–d show the liquid-fraction
fl contours in the three zones at time t = 0.1, 1.0, 2.0 and
5.0 s. In Fig. 8a–d, temperature T

T S
contours are shown.

It is seen from Figs. 6a and 7a– d that with the passage
of time, the thickness of the mushy-zone penetrates
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Fig. 10. Variation of centerline: (a) liquid-fraction fl and (b) temperature
T/TS for different values of the scattering albedo x at time t = 5.0 s;
b = 1.0, N = 0.1, L = 1.0.
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towards the south boundary and its thickness increases. Its
thickness is maximum along the centreline x

X ¼ 0:5
� �

and
decreases symmetrically towards the east or the west
boundary. It is observed from these figures that in the early
stage, the mushy-zone grows at a faster rate.

It is seen from Figs. 6b and 8a–d that at any time, the
temperature gradient is always more towards the cold
boundary from where the solidification starts. With the
passage of time, at any location, the temperature gradient
decreases. In the mushy-zone, the gradient decreases from
the solid-mushy interface to mushy-liquid interface. The
reason for the decrease in temperature gradient with the
passage of time is attributed to the fact that the cooling
effect penetrates inside the medium with less intensity.

With x = 0.0, N = 0.1 and L = 1.0 kJ/kg at time
t = 5.0 s, effect of the extinction coefficient b on the centr-
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Fig. 11. Variation of centerline: (a) liquid-fraction fl and (b) temperature
T/TS for different values of the conduction radiation parameter N at time
t = 5.0 s; b = 1.0, x = 0.0, L = 1.0.
eline liquid fraction fl and temperature T
T S

distributions is
shown in Fig. 9a and b, respectively. It is seen from
Fig. 9a that the mushy-zone thickness is less when the med-
ium is radiatively more participating (b = 3.0) and accord-
ingly, as seen from Fig. 9b, the gradient in T

T S
is more for

this case (b = 3.0). This trend is because of the fact that
for a higher value of b, penetration of radiation in the med-
ium is less because of high absorption. Thus the mushy
zone moves slowly and also its thickness is less.

The effect of the scattering albedo x on the centreline
liquid fraction fl and temperature T

T S
distributions is shown

in Figs. 10a and b, respectively. This effect is shown for
b = 1.0, N = 0.1 and L = 1.0 kJ/kg at time t = 5.0 s. With
increase in x, the thickness of the mushy-zone increases
and the temperature gradient decreases. This is because
of the fact that with increase in x, medium scatters more
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Fig. 12. Variation of centerline: (a) liquid-fraction fl and (b) temperature
T/TS for different values of the latent heat L at time t = 5.0 s; b = 1.0,
x = 0.0, N = 0.1.
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energy and as seen from Eq. (19), the effect of radiation
decreases.

Fig. 11a and b show the effect of the conduction–radia-
tion parameter N on the centreline liquid-fraction fl and
temperature T

T S
distributions, respectively. These results

are shown for b = 1.0, x = 0.0 and L = 1.0 kJ/kg at time
t = 5.0 s. It is observed that in the radiation dominated sit-
uation (N = 0.01), the mushy-zone thickness is less and its
movement is also slow. In the mushy-zone, the temperature
gradient is more in the radiation dominated case. Since the
radiative contribution is of the order of rT 4

S, the radiation
dominated case brings more non-linearity in the tempera-
ture profile. A similar trend with regard to the radiation
effect has been found in Figs. 9 and 10 for b = 3.0 and
x = 0.0, respectively.

Effect of the latent heat L on the centreline liquid-frac-
tion fl and temperature T

T S
distributions are shown in

Fig. 12a and b, respectively. At time t = 5.0 s, these results
are shown for b = 1.0, x = 0.0 and N = 0.1. A high value
of L implies that more energy has to be extracted to cause
solidification and thus for this case, as observed from
Fig. 12a, the mushy-zone thickness is less and its movement
is slow. Further, as seen from Fig. 12b, the temperature
gradient is also more when L is large.

All the computations in the present work were carried
out with Dt = 0.001. The steady-state condition was
observed at t = 5 s. Thus, all the runs were taken for
5000 iterations. On a CPU (512 MB, 2.8 GHz with hyper
threading) the runs for various cases ranged from 25 to
40 min.

5. Conclusions

Solidification of a 2-D square semitransparent medium
was analyzed using the LBM. An enthalpy based formula-
tion was used to simulate the solidification process. Radi-
atively, the medium was considered absorbing, emitting
and isotropically scattering. The radiative information
was computed using the FVM. The results of the present
2-D LBM-FVM code were validated with those available
in the literature. Firstly it was validated with the results
of a 2-D conduction–radiation problem without phase
change and then with a 1-D planar medium with phase
change and without radiation by stretching one of its
dimensions. Distributions of liquid-fractions and tempera-
ture were studied for different parameters such as the
extinction coefficient, the scattering albedo, the conduc-
tion–radiation parameter and the latent heat. For a given
set of parameters, evolution of liquid-fraction and temper-
ature were also studied. It was found that in radiation
dominated cases, which were identified with higher value
of the extinction coefficient, lower value of the scattering
albedo and lower value of the conduction–radiation
parameter, the thickness of the mushy-zone was less, its
movement was slow and the non-linearity in the tempera-
ture was comparatively more. A similar trend was also
observed for a higher value of the latent heat.
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